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Abstract— A number of works have been reported on robot 
control using EMG signals. Control of robots, wheelchairs, and 
rehabilitation aids using the arms, hands or legs by EMG 
signals has been quite popular and effective. However, few 
works have dealt with head-movement control using neck 
EMG signals. We have built a model that estimates continuous 
human head movement from neck EMG signals. Our proposed 
model, which considered not only static but also dynamic 
effects, effectively suppressed the over/undershoot, and 
predicted head-rotation movements well. This result indicates 
that the proposed model has the potential to reconstruct the 
observed data from neck EMG signals properly. 

I. INTRODUCTION 
virtual reality provides various kinds of sensory 

information to make users feel that they are in a 
particular “place”. The auditory tele-existence robot is one 
kind of the virtual auditory display systems and was built 
based on the concept that remote 3D sound space 
reproduction can be best achieved by using a steerable 
user-like dummy head that tracks head movement([1-3], Fig. 
1). This robot quietly synchronizes with the user's head 
movements in real time, providing the user with a perfect 
3-Dimentional virtual auditory space. Because, perfect 
dynamic binaural signals are presented at the user’s ears. 

In order to achieve a believable sense of reality, it is 
essential for the system to calculate and display sensory 
information fast enough to fool the senses. Current motion 
sensors (e.g. acceleration and magnetic sensors), which 
monitor the head movement of the user, have enough 
capability for capturing fast movements but have some 
temporal delay (Fig. 1(b)). However, time delay inevitably 
exits because of controlling the mechanical dummy-head 
robot. The total amount of the time delays is 100 ms, which 

is larger than the threshold of detecting the motion delay, i.e. 
60 ms [4]. The delay could somehow deteriorate the 
reproduced virtual 3D auditory space. 
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For avoiding this problem, the use of electromyogram 
(EMG) is one of the alternative candidates for monitoring a 
user’s head-rotation movements (Fig. 1(c)). Because EMG 
is observed about 100 ms before the onset of the muscle 
movement. A number of works have been reported on 
human-robot interface using EMG signals [5]. Control of 
robots [6-8], wheelchairs [9-11], and rehabilitation aids [12] 
using the arms, hands or legs by EMG signals have been 
quite popular and effective. Some studies have also dealt 
with head-movement control using neck EMG signals. For 
example, several head motions could be detected from 
characteristics of the neck EMG signals, and their motions 
are converted into operation commands [9] [11]. Head 
postures were estimated from neck EMG signals using the 
artificial neural network model [13]. These studies 
uncovered several motion patterns from the EMG signals. 
However, there are infinite numbers of spatio-temporal 
motion patterns, and it is impossible to recognize all types of 
head movements. For building a practical human-robot 
interface for “TeleHead”, it is necessary to estimate the time 
series of head-rotation movements. 

This paper proposes a simple and effective method for 
estimating continuous human head-rotation movements 
from neck EMG signals. Our proposed model, which 
considers not only static but also dynamic effects, 
effectively suppresses the over/undershoot, and predicts 
head-rotation movements well. This result indicates that the 
proposed model has the potential to reconstruct the observed 
data from neck EMG signals properly. 

 

II. METHODS 

A. Subjects 
Ten male subjects, aged 21-35 years old, participated in 

the experiment. All subjects participated in the three 
experimental tasks. The institutional ethics committee 
approved the experiment, and the subjects gave informed 
consent prior to participation. 
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B. Experimental settings 
Subjects sat on chairs, and their shoulders were fixed to 

the back of the chairs with a harness. Three LCD monitors 
were placed in front of the subjects, and gave the subjects 
the visual information about the movement tasks.  

Head-direction angle was recorded using a motion sensor 
(Flock of Birds, Ascension Technology Corporation) and 
sampled at 35Hz. This motion sensor was horizontally 
attached to the head of the subjects with a headband 
(Katyusha).  

 
Fig. 1.  Outline of “TeleHead” system. (a) Steerable dummy-head (b) 
Current interface using motion sensors. (c) EMG interface. 
 
 

 
 
Fig. 2.  Diagrams of estimation models. (a) indicates static model (b) 
indicate  dynamic model, which considers not only static but also dynamic 
effects. 

Surface EMG activity was recorded from four main 
muscles for head-rotation movements: right and left 
sternocleidomastoid muscles and right and left trapezius 
muscles. EMG signals were recorded with pairs of 
silver-silver chloride surface electrodes in a bipolar 
configuration. Each signal was amplified by BioSemi 
Active-Two amplifiers (BioSemi, Amsterdam, The 
Netherlands) and sampled at 2048 Hz.  

C. Head-direction angle estimate by EMG 
1) Static model 

Muscle activations produce tensile forces. Head-direction 
angle depends on the static balance between the left- and 
right-ward tensile forces. We assumed that the neck EMG 
signal, which reflects muscle activation levels, has some 
correlation with the head-direction angle. In order to 
estimate the head-direction angle from neck EMG signals, 
we used a linear regression model (Fig. 2(a)). This model is 
given by  
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where N is the number of channels (N=4). , , 

, and  are static EMG signals of left and right 
sternocleidomastoid muscles and left and right trapezius 
muscles, respectively. βs is partial regression coefficient, Es 
is residual error for the static model, and θs is the estimated 
head-direction angle. The suffix “s” represents a parameter 
used by the static model. 
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2) Dynamic model 
Unbalanced tensile forces between left- and right-ward 

neck muscles cause a head-rotation movement.  
We assumed that muscle activations consist of two 

components. The first is a static effect that contributes to 
holding the current posture. The latter is a dynamical effect 
that contributes to accelerating or decelerating the 
head-rotation movements. 

In general, EMG signals have a correlation with 
movement acceleration. Angle acceleration is assumed to be 
expressed as follows: 
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Fig. 3.  Task setting (Experiment I).  
 
 
 
 

 
Fig. 4.  Schematic illustration of a trial sequence (Experiment II). 
 
 
 
 

 
Fig. 5.  Schematic illustration of a trial sequence (Experiment III). 

where d means time delay between the EMG and realized 
rotation angle. The suffix “e” represents a new parameter 
used by the dynamic model. 

To compensate for the effect of dynamics, estimated 
head-direction angle )(tθ  is expressed as follows:  
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where N=4, Xi is EMG signal, β e is partial regression 
coefficient, and E is residual error for the dynamic model. 
Here, α is a constant number. This model represents the 
dynamical effects as a parameter βe, thus giving it the 
ability to estimate the effect of dynamics properly.  

D. Movement tasks 
1) Experiment I (postural maintenance) 

The first task was to hold an instructed head-direction 
angle for a brief period (about seven seconds). Fifteen 
head-direction angles were prepared (0°, ±10°, ±20°, ±30°, 
±40°, ±50°, ±60°, and ±70°, Fig. 3). The instructed and 
observed angles were displayed on the LCD monitors. 
Subjects were requested to hold each instructed 
head-direction angle while watching the monitors. Ninety 
trials (15 directions × 6 sessions = 90 trials) were recorded 
and used for analysis. Subjects were allowed to take a brief 
rest after each session. 

2) Experiment II (rotating movements) 
The second task was to rotate the head direction slowly. 

Subjects performed two types of movements: right-leftward 
and left-rightward head rotational movements (Fig. 4(a)). 
Three seconds before the movement start cue, visual 
information about the task type was presented on the screen 
(“→” for right-leftward and “←” for left-rightward 
movement tasks). After the start cue, subjects began to rotate 
their head direction for four seconds and maintain their 
angles for two seconds (Fig. 4(b)).  

One session consisted of thirty repetitions of a trial for 
two movement patterns. Each subject carried out 60 trials (2 
types × 15 trials × 2 sessions = 60 trials). Two types of the 
tasks were presented in a pseudorandom order. 

3) Experiment III (different speed movements) 
The third task was to execute head-rotation movements of 

two different rotation speeds: quick and slow. In the quick 
movement, subjects rotated their heads from the front to an 
instructed direction for one second. In the slow movement 
task, subjects rotated them for two seconds. After the 
movement, subjects maintained their angles for two seconds 
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(Fig. 5). Either one of the rightward and leftward directions 
was randomly presented on the screens (the same protocol as 
Experiment II). 

We recorded 30 trials for each speed and each direction. 
One session consisted of thirty repetitions of a trial for two 
movement directions. Altogether, 120 trials were obtained 

(2 speeds × 2 directions ×15 trials ×2 sessions= 120 
trials).  

E. Data Analysis 
Angle data were digitally filtered by a third-order 

Butterworth filter with an upper cutoff frequency of 5 Hz. 
Derivatives of the angle data were computed by applying a 
three-point local polynomial approximation.   

The noise signals of the angle sensor (Flock of Birds) 
were removed using the band-stop filter 201-213 Hz. Each 
EMG signal was digitally filtered at 20 Hz (high-pass) and 
1,000 Hz (low-pass) to remove some of the noise component. 
The filtered EMG signals were full wave rectified and then 
smoothed using a moving average technique that averaged 
every 101 points of data. 

 
Fig. 6.  Mean rectified EMG of each muscle for each subject and 
head-rotation angle. (a)-(d) indicate mean rectified EMG of left and right 
sternocleidomastoid, and left and right trapezius muscles, respectively. 
Open circles indicate the observed value for each head-rotation angle. Gray 
areas indicate the angular range of ten degrees. 
  
 
 
 

Fig. 7.  Example of observed and estimated angle data (left-rightward 
movement). The black line indicates the observed angle data. The dashed 
and gray lines indicate the estimated angle data using static and dynamic 
models, respectively. 

Estimated angles using Eqs. (1) and (3) were smoothed by 
a third-order low-pass Butterworth filter at 1Hz cut-off. 

III. RESULTS 

A. Relationship between head-rotation angle and neck 
EMG signals 
First, we investigated the relationship between the 

head-rotation angle and neck muscle activation levels. In the 
rightward rotation task, mean EMG signals of left- 
sternocleidomastoid and right-trapezius muscles were 
increased (Fig. 6(a) and (d)). In the leftward rotation task, 
the activation levels of right-sternocleidomastoid and 
left-trapezius muscles were increased (Fig. 6(b) and (c)). 
The intensity of the sternocleidomastoid muscles had a 
tendency to be larger compared to that of the trapezius 
muscles. A higher variance was present at large angles 
among the subjects (e.g. ±70°).  

B. Estimation of head-direction angle from neck EMG 
signals 
We estimated head direction angles from neck EMG 

signals. The first step in data analysis was a multiple linear 
regression using the model of Eq. (1). This analysis yielded 
coefficients for each EMG signal using the least square 
method. Next, predicted angles were computed by Eq. (1). 
The quality of the prediction was quantified by calculating 
the R-square coefficient between actual and predicted data. 
Finally we carried out cross-validation analysis to evaluate 
the robustness of the results. The trial data of the six sessions 
were equally divided into three data sets, and two of them 
were used for the calculation of weighting coefficients as 
training data sets. Then the angle predictions were computed 
for the other one-third as a test data set.  

The R-square coefficients between the actual and 
predicted angles were high (first one-third of the data set: R2 

= 0.87 ± 0.06 [mean±SD], second one-third: R2 = 0.86 ± 

0.08, final one-third: R2 = 0.86 ± 0.06).  
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We investigated whether there were any differences 

among the R-squares calculated from the three test data sets. 
A randomized block ANOVA could not find any significant 
differences among them (F(2, 18) = 1.06, p = 0.39).  

Fig. 8.  Comparison of AIC for each test data set. Data represent means ±
SD. To evaluate the two models, paired t-test was conducted for each test 
data set. * and ** denote significant levels p<0.01 and p<0.001, 
respectively. 
 
 

 
Fig. 9.  Examples of observed and estimated angle data. (a) and (b) indicate 
the results of the quick and slow movement tasks, respectively. 

These results indicate that, in this static task, a simple 
linear regression model can adequately predict 
head-direction angles with robustness from neck EMG 
signals. 

C. Reconstruction of head rotation movement from neck 
EMG signals 
When we rotate our heads, it requires a larger force to 

accelerate or decelerate the head-rotation movements. These 
movements inevitably involve dynamics to overcome the 
viscous-inertial load. If reconstructing the head-rotation 
movement information from neck EMG signals, it is 
necessary to compensate for the effect of dynamics.  

In general, the mean levels of muscle activations have a 
tendency to increase with movement acceleration. This 
paper assumes that estimation errors of  Eq. (1) arising from 
the dynamical effect have a correlation with movement 
acceleration and deceleration, and thus we derived Eq. (3).  

This method concerning the effect of dynamics was 
applied to estimation of the time series of head-rotation 
movement. Figure 7 shows typical trial data from a single 
subject. The black line shows the observed data. The dashed 
line shows the estimated data using the static model, while 
the gray line shows the estimated data using the dynamic 
model.  

When using the static model, estimated angle data have a 
tendency to overshoot and undershoot at movement onset 
and offset, respectively (Fig. 7, dashed line). When using 
only the static model, the observed data were unable to 
reconstruct the movement information correctly.  

In contrast, the dynamic model, which considered not 
only the static but also the dynamic effects, effectively 
suppressed the over/undershoots. This result indicates that 
the proposed model has the potential to reconstruct the 
observed data from neck EMG signals properly. 

In small head-rotation angles, errors between the 
observed and estimated angles using the both models were 
large because these angles require less muscle activations 
for head-rotation movements. 

For the efficient model discrimination methods, Akaike’s 
information criterion (AIC) was calculated [14]. The AIC of 
the dynamic model was significantly smaller than that of the 
static model ([first half] paired t-test: t(9) = 4.56, p < 0.001, 
[last half] t(9) = 4.43, p < 0.001, Fig. 8).  

Next, we evaluated the robustness of these results by 
cross-validating the predictions between the first and second 
halves of the data. One half of the data were used for the 
calculation of weighting coefficients using the dynamic 
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mode Eq. (3), and then angle predictions were computed 
from the other half of the data. This analysis is important as a 
test of the feasibility of this approach for controlling the 
auditory tele-existence robot “TeleHead” in real-time.  

The Pearson’s product-moment correlation coefficients 
between the actual and predicted angles were relatively high 
([first half]: r = 0.55 ± 0.17, [last half]: r = 0.58 ±0.14). 
We investigated whether there were any differences 
between the correlation coefficients calculated from the two 
test data sets. Paired t-test could not find a significant 
difference between them (t(9) = 1.46, p = 0.91). There was 
also no significant difference between the AICs calculated 
from the two test data sets (paired t-test: t(9) = 1.39, p = 
0.90).  

This dynamic model has sufficient ability to predict the 
time series of head-rotation angles, and has the potential to 
control the robot in real time.  

D. Generalization ability of the dynamic model 
For predicting various kinds of head-rotation movements 

from neck EMG signals, generalization ability is one of the 
important elements. In order to evaluate this ability, the 
dynamic model was applied to the EMG data obtained from 
unknown tasks to the model itself. The first half of the data, 
“rotating movements,” were used for the calculation of 
weighting coefficients using the dynamic model Eq. (3), and 
then angle predictions were computed from the data, “quick 
and slow movements.” 

Figure 9 shows examples of trial data from a single 
subject. When using the static model, estimated angle data 
have a tendency to mistakenly predict larger angles than the 
actual ones (Fig. 9(a), dashed line). In contrast, the dynamic 
model could suppress the effect of dynamics 
(over/undershoot), and correctly compensated for the 
magnitudes of head-rotation angles (Fig. 9(a), gray line). 
This tendency was observed in the different rotation-speed 
tasks (slow movements, Fig. 9(b)). 

The AIC of the dynamic model was significantly smaller 
than that of the static model ([quick movement] paired t-test: 
t(9) = 4.22, p < 0.01, [slow movement] t(9) = 4.18, p < 0.01, 
Fig. 8). That indicated that the dynamic model was more 
efficient for head-rotation movements compared to the static 
one.  

The correlation coefficients between the actual and 
predicted angles were also high ([quick movement] r = 0.72
±0.25 [slow movement] r = 0.79±0.23). 

These results indicate that the dynamic model has a high 
generalization ability of estimation from neck EMG signals. 
 

IV. DISCUSSION 
We have built a model that estimates continuous human 

head movement from neck EMG signals. Our proposed 
model, which considered not only static but also dynamic 
effects, effectively suppressed the over/undershoot, and 
predicted head-rotation movements well. This result 

indicates that the proposed model has the potential to 
reconstruct the observed data from neck EMG signals 
properly. 

A. Implementation of human-robot interface 
We implemented this proposed method to construct an 

interface with an acoustical telepresence robot (TeleHead) 
[1-3]. We confirmed that the proposed method enables us to 
control the robot effectively. Although there was some 
over/undershoot on estimated head-rotation angle by the 
dynamic model, the TeleHead worked without problem. 
Furthermore, the estimated angle preceded actual head 
movement just as EMG signals precede actual muscle 
movement, which almost perfectly compensates for 
mechanical and control delays of the head following 
movement of the TeleHead. 

B. Computational cost 
The only time-consuming part of the proposed method is 

calculating the weighting coefficients of each sensor. After 
doing so, the calculation of the prediction is almost 
instantaneous. The proposed model is superior not only in 
terms of prediction abilities but also computational 
performances, making it very easy to implement in the actual 
human-robot interface. 

C. Comparison among other estimation methods 
The proposed dynamic model is the first step to control 

the TeleHead by using neck EMG signals. To evaluate the 
advantage of the proposed model, it is necessary to compare 
with other EMG-based motion decoding methods, such as 
linear state space models, support vector machines, etc. It is 
an issue in the future.  

D. Preprocessing  
The magnitudes of raw EMG signals will change 

drastically for a number of reasons, such as the state of the 
electrodes, the distance between the electrodes, the 
configuration of muscles, skin condition, etc. Raw EMG 
signals normalized by maximum voluntary contraction 
(MVC) have a physically meaningful value, and the use of it 
would be expected to make our results in Fig.6 clearer.  

E. Improvement of estimation in front 
The errors between actual and predicted angles of Fig. 7 

were large in relatively small head-rotation angles. Because 
muscle activation levels are less in front, that would cause 
the less precise estimation. To solve this problem, Moon et 
al. suggested that the image observation was used [15]. This 
hybrid estimation method might improve the precision of 
angles in front. 
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